Project Title: Wood waste derived anti-bacterial and biodegradable nano-fibers for filtration applications

Principal Investigator: Dr Tsang Chi Wing, Department of Construction Technology and Engineering, Technological and Higher Education Institute of Hong Kong, Vocational Training Council

Total Approved Grant: $499,555.60 (ECF & WWGF: 50/50)

Duration: 1/6/2021 to 31/5/2023

Project Status/Remarks: On-going

Project Scope: This project aims to investigate the potential use of renewable biopolymers as electrostatic and anti-bacterial materials from discarded wood wastes collected in Hong Kong. Lignin, which can be extracted from wood waste, is one of the most abundant biopolymers on the earth and its biodegradability, renewability, strong mechanical properties make it suitable for use in a number of applications. Through functionalisation, lignin can carry anti-bacterial functions. The polymeric materials can then be further electrospun with electret materials to prepare nanofibrous materials which can capture particulate matters such as PM$_{2.5}$. They can also be used for indoor and outdoor air filtration purposes to stop the widespread of contagious diseases such as the recent COVID-19. The operating parameters of the electrospinning process will be systematically explored to achieve the optimal bacteria, viral and particle filtration efficiency (BFE, VFE and PFE), with the aid of functionalisation and electrospinning techniques.

Overall, this project will demonstrate great potentials of valorisation of wood wastes as uses in filter materials and as an alternative to the current use of non-renewable and non-biodegradable polypropylene materials. The environmental problem including wood wastes, microplastics and public health problem will be simultaneously alleviated for the future sustainable development of Hong Kong.

Summary of the Findings/Outcomes: To be available upon completion of the project